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1 Review of single variable saddle integrals

Recall that Steve showed us: ∫
γ

A(z)e−λφ(z)dz

is asymptotic to

A(z0)

√
2π

φ′′(z0)λ
e−λφ(z0)

and the first few terms in the expansion near the origin as λ → ∞. Remember the proof
where the first few coefficients were obtained via analytic inversion, and a mistake was found
by Steve regarding the exponent of the big-Oh term.

2 Overview of 5.1

We continue with this set up with A as our amplitude and φ as the phase, both analytic
functions, but this time of a vector argument z along the contour C, a d-chain in Cd.
Compared to the one variable case where Theorem 4.1.1 covers all degrees of degeneracy
of the phase function φ (k ≥ 2), and all degrees of vanishing of the amplitude function A
(l ≥ 0), for the multivariate case φ has a much greater range of possibilities.

Recall that in one dimension, we take k = 2; for higher dimensions, we assume the Hessian
matrix

H :=

(
∂2φ

∂zj∂zk

)
6= 0.

The Taylor series for φ expanded around the origin is

φ(z) = φ(0) + zT∇φ(0) +
1

2
zTHz +O(|z|3),
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hence the Hessian matrix represents twice the quadratic term in the phase, and its non-
singularity is a generalization of non-vanishing of the quadratic term in the univariate
case.

Instead of the special phase function x2, we will use S(x) = x21 + · · ·+ x2d to denote the
standard quadratic. Parallel to the development of the univariate case, we will establish the
result

A = monomial φ = standard quadratic

coupled with a big-Oh result which allows us to integrate term by term to obtain asymptotics
for the standard phase function.

Three main theorems:

Theorem 1 (5.1.1 Standard Phase). Let A(x) be a real analytic function defined on a
neighbourhood N of the origin in Rd with a series expansion

A(x) :=
∑
r1,...,rd

xr11 · · ·x
rd
d =

∑
r

arx
r.

Let

I(λ) :=

∫
N
A(x)e−λS(x)dx.

Then an asymptotic series expansion for I(λ) in increasing |r| is

I(λ) ∼
∑
n

∑
|r|=n

arβrλ
−(|r|+d)/2

where βr = 0 if any rj is odd, and

β2m =
√
π
d ·

d∏
j=1

(2mj)!

mj!4mj
,

otherwise.

Theorem 2 (5.1.2 Re(φ) has a strict minimum). Suppose that the real part of φ is strictly
positive except at the origin and that its Hessian matrix H is non-singular there. Let A be
any analytic function not vanishing at the origin and define

I(λ) :=

∫
N
A(z)e−λφ(z)dz.

Then
I(λ) ∼

∑
l≥0

clλ
−d/2−l,

where

c0 = A(0) ·
√

2π
−d√

det(H)
,

and the choice of sign is defined by taking the product of the principal square roots of the
eigenvalues of H.
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Theorem 3 (5.4.8 Critical point decomposition for stratified spaces). Let A and φ be analytic
functions on a neighbourhood of a stratified space M⊆ Cd. If φ has finitely many critical
points on M, then

I(λ) ∼ (2πλ)−d/2
∑
x

A(x)eλφ(x) det(H(x))−1/2

where
H(x) is the Hessian for φ at x,

and the sum is over the critical points x at which the real part of φ is minimized.

3 5.2 Standard phase

Remember how Steve developed the single variate case by starting at the simplest case:

A = monomial and φ = x2.

We will begin with a proposition which evaluates a real integral exactly.

Proposition 4 (5.2.1). The integral∫ ∞
−∞

x2ne−x
2

dx = β2n =
√
π · (2n)!

n!4n
.

Note that the exponent of the monomial A is 2n, and the exponent of the monomial and
monic φ is 2.

Proof. We will prove this proposition by induction.
The basis step is when n = 0. This is, up to a change of variables and observation of

symmetry, the standard Gaussian integral and is in fact the definition of Γ(1/2) – which is√
π. This can be checked directly using the substitution u = x2 in the integral.

The inductive step is to assume the result for n− 1. We use integration by parts to get∫ ∞
−∞

x2ne−x
2

dx =

∫ ∞
−∞

x2n−1

−2
(−2xe−x

2

)dx

=
−x2n−1

2
· e−x2

∣∣∣∣∞
−∞
−
∫ ∞
−∞

(2n− 1)x2n−2

−2
e−x

2

dx

= 0 +
2n− 1

2

√
π · (2n− 2)!

(n− 1)!4n−1
,

by the inductive hypothesis, and the result follows from multiplying and dividing the expression
by 2n.

Since the result for n − 1 implies the result for n, by mathematical induction we have
shown that the result of the proposition holds.
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Now we can vary the phase function φ so that it is no longer monic, but has a factor of λ.
This is stated in the next Corollary.

Corollary 5 (5.2.2). ∫ ∞
−∞

x2ne−λx
2

dx = β2nλ
−1/2−n.

Proof. We just need a change of variables y =
√
λx. This implies dy =

√
λdx and thus∫ ∞

−∞
x2ne−λx

2

dx =

∫ ∞
−∞

1

λn ·
√
λ
y2ne−y

2

dx = λ−n−1/2β2n.

Corollary 6 (5.2.3 Higher dimensional monomial integral). Let r be a d-vector of nonnegative
integers. Then∫ ∞

−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

xr11 x
r2
2 . . . x

rd
d e
−λ(x21+x22+...+x2d)dx1dx2 . . . dxd =

d∏
j=1

βrj · λ−(d+|r|)/2,

where βrj = 0 if rj is odd (and thus the integral is nonzero only when each rj is even).

Proof. When our integral is written out as a d-dimensional integral, you can see how inte-
grating each dimension separately implies the integral has the value

d∏
j=1

(∫ ∞
−∞

x
rj
j e
−λx2jdxj

)
=

d∏
j=1

βrjλ
−(1+rj)/2

=
d∏
j=1

βrj · λ−(d+|r|)/2

Proposition 7 (5.2.4 big-O estimate). Let A be any smooth function satisfying a big-O
bound at the origin

A(x) = O(|x|r)

where the norm is the Euclidean norm, and r is just some positive real number, not a vector
as in previous corollary. Then the integral over any connected compact set K containing the
origin may be bounded from above by∫

K

A(x)e−λS(x)dx = O(λ−(d+r)/2).

The implied constant on the right goes to zero as the constant in the hypothesis of the upper
bound goes to zero.
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Proof. 1. Because K contains the origin, is connected, compact, and A(x) = O(|x|r) at
the origin, there exists a constant c such that |A(x)| ≤ c|x|r in K.

2. Let us create a sequence of sets that are intersections of K with either the ball

K0 := {x : |x| ≤ λ−1/2}

or the shells
Kn := K ∩ {2n−1λ−1/2 ≤ |x| ≤ 2nλ−1/2}.

These sets help us say more precisely how |A(x)| is bounded.

3. We can also bound ∫
K0

e−λS(x)dx ≤
∫
K0

dx ≤ cdλ
−d/2,

for some constant cd. Thus, combining the previous points gives∣∣∣∣∫
K0

A(x)e−λS(x)dx

∣∣∣∣ ≤ c′λ−(r+d)/2.

4. For n ≥ 1, on Kn we use A’s big-O bound to obtain

|A(x)| = O(|x|r) ≤ 2rn · c · λ−r/2.

5. We can use our bound on |x| between the shells to give us a bound on |x|2

22n−2/λ ≤ |x|2 ≤ 2n/λ.

Thus,
e−λS(x) ≤ e−2

2n−2

.

6. Finally, the integral bound in Kn is∫
Kn

dx ≤ 2dncdλ
−d/2.

7. Combining the last three bounds, we have the bound for the entire integral by summing
over all the shells. Let

c′′ = c · cd
∞∑
n=1

2(d+r)ne−2
2n−2

<∞.

Then ∫
K

A(x)e−λS(x)dx =
∞∑
k=0

∣∣∣∣∫
Kn

A(x)e−λS(x)dx

∣∣∣∣ ≤ (c′ + c′′)λ−(r+d)/2.
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These four propositions and corollaries make it easier to construct the proof of Theorem
5.1.1. (Standard Phase).

Proof of Theorem 5.1.1. Write A(x) as a power series up to degree N plus a remainder term:

A(x) =
N∑
n=0

∑
|r|=n

arx
r

+R(x),

where R(x) = O(|x|N+1).
Now we have a monomial part of A, along with a big-O estimate. Using Corollary 5.2.3 on

the monomial integral and Proposition 5.2.4 on the big-O estimate thus implies the desired
result:

I(λ) =
N∑
n=0

∑
|r|=n

arβrλ
−(n+d)/2

+O(λ−(N+1+d)/2).

4 5.3 Real part of phase has a strict minimum

Here, we have the set up:

1. Let N be a neighbourhood of the origin in Rd.

2. We have an analytic φ : N → Cd which is represented by a power series that converges
on N .

3. Such a φ may be extended to a holomorphic function on a neighbourhood NC of the
origin in complex d-dim space.

4. Now, suppose φ(0) = 0 and the real part of φ is non-negative on N . This section’s
assumption that the real part of phase φ has a strict minimum implies that the gradient
of φ must vanish at the origin.

5. We say that φ has a quadratically non-degenerate critical point at the origin if the
quadratic part of φ is non-degenerate.

6. Recall in the expansion of φ where the quadratic part of φ is a quadratic form represented
by

1

2
zTHz

7. Non-degeneracy of a quadratic form means non-singularity of the Hessian H; the
determinant of a quadratic form means the determinant of H.
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8. Review of Hessian behaviour under a change of variables: If ψ : Cd → Cd is a bi-
holomorphic map, ∇φ(ψ(y)) = 0 when ψ(y) = x, and the Hessian matrix H exists
there, then the Hessian matrix H′ of the composed map φ ◦ ψ at y is given by

H′ = JTψHJψ

where Jψ is the Jacobian matrix of the map ψ at y:

Jψ =


∂ψ1

∂y1
· · · ∂ψ1

∂yd
...

. . .
...

∂ψd

∂y1
· · · ∂ψd

∂yd

 .

We need two lemmas before the proof of Theorem 5.1.2 (Re(φ) has a strict minimum).
The first lemma reassures us that near the origin, if ψ is not of our standard quadratic form
S(x) then we can find local coordinates to change x into y where a standard quadratic form
is attained. The second lemma provides the equivalence between verifying the sign choice of
a composed derivative in the multivariate case and a determinantal condition.

Lemma 8 (5.3.1). There is a bi-holomorphic change of variables x = ψ(y) such that

φ(ψ(y)) = S(y) = y21 + · · ·+ y2d.

The differential

Jψ = dψ(0) satisfies (det Jψ)2 =
1

det(H(φ)/2)
.

Recall what Nicolas taught us about Morse theory – this lemma is the Morse Lemma.

Proof. Let us do the easy part first: consider

H̃(S) = JTψH(φ)Jψ.

Compute the Hessian of the standard quadratic form S to get H̃(S) = 2I, where I is the
identity matrix. Then

1 = det(H̃(S)/2) = det

(
JTψ
H(φ)

2
Jψ

)
= det(Jψ)2 · det(H(φ)/2),

and thus

(det Jψ)2 =
1

det(H(φ)/2)
.

The long part is the change of variables where we break the part into three steps.

Step 1 Rewrite φ(x) as an expansion in coordinates xjxk multiplied by the entries of H.
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Step 2 Use mathematical induction to morph the yj ’s one at a time into the standard quadratic
form by assuming that none of the diagonal entries of the Hessian is 0.

Step 3 Take care of the case when some diagonal entry of the Hessian is 0 by using a unitary
conjugation.

Lemma 9 (5.3.2). Let W ⊆ Cd be the set {z : Re(S(z)) > 0}. Pick any α ∈ GLd(C) mapping
Rd into W , and let M := α†α be the matrix representing S ◦ α. Let π : Cd → Rd be the
projection onto the real part. Then π ◦ α is orientation preserving on Rd iff detα is the
product of the principal square roots of the eigenvalues of M .

Proof. We will need lots of linear algebra in this proof.
First suppose α ∈ GLd(R). Then M := αTα is Hermition and thus has an eigen-

decomposition M = P−1DP . As zMzT = (zαT )(zαT )T = |zαT |2 ≥ 0 for all z, we see that
yDyT ≥ 0 by a change of variables. As D is a diagonal matix whose entries are the eigenvalues
of M , these eigenvalues are positive. Therefore, the product of their principal square roots is
positive.

The map π is the identity on Rd, so an equivalent statement would be: The linear
transformation α preserves orientation iff it has positive determinant. (This is true by
definition).

In general, define αt := πt ◦ α, where

πt(z) = <{z}+ (1− t)i={z}.

This should remind us of the homotopic map Nicolas showed us last semester.
For all 0 ≤ t ≤ 1,

πt(Rd) ⊆ W,

so Mt := αTt αt has eigenvalues with nonnegative real parts.
The product of the principal square roots of the eigenvalues is a continuous function on

the set of non-singular matrices with no negative real eigenvalues. The determinant of αt is a
continuous function of t, and when t = 1 we have seen that it agrees with the product of
principal square roots of eigenvalues of Mt; thus by continuity, this is the correct sign choice
for all 0 ≤ t ≤ 1. We take t = 0 to prove the lemma.

Proof of Theorem 5.1.2: Re(φ) has a strict minimum. The power series we got from Theo-
rem 5.1.1 allows us to extend φ to a neighbourhood of the origin in Cd.

Using Lemma 5.3.1, we can apply the change of variables ψ to turn a random φ into a
standard quadratic:

I(λ) =

∫
ψ−1C

A ◦ ψ(y)e−λS(y) det(dψ(y))dy =

∫
ψ−1C

Ã(y)e−λS(y)dy,

where C is a neighbourhood of the origin in Rd with the standard orientation.

8



Here, we need to check that we can move the chain ψ−1C of integration back to the real
plane. If successful, then Theorem 5.1.1 can be used to yield the desired expansion in powers
λ−(d/2+l).

Take the real part of S(z) and call it h(z). The chain C ′ := ψ−1(C) lies in the region
{z ∈ Cd : h(z) > 0} except when z = 0, and in particular h ≥ ε > 0 on ∂C ′.

Next, we will define a homotopy from the identity map to the map π projecting out
the imaginary part of z. For any chain σ where the integration takes place, this homotopy
induces a chain homotopy supported on the image of the support of σ under the homotopy.

Let
H(z, t) := <{z}+ (1− t)i={z}.

Then H(σ) is a chain homotopy satisfying

∂H(σ) = σ − πσ +H(∂σ).

With σ = C ′, in addition to observing that S(H(z, t)) ≥ S(z), we see there is a d+ 1-chain
D with

∂D = C ′ − πC ′ + C ′′

and C ′′ supported on {h > ε}.
Recall Stokes’ Theorem:

∫
∂Dw =

∫
D
dw = 0 when w is a holomorphic d-form. Here we

use ∂D = C ′ − πC ′ + C ′′ to obtain∫
C′
w =

∫
πC′

w −
∫
C′′
w.

Taking w = Ãe−λS and noting
∫
C′′
w = O(e−λε), this tells us

I(λ) =

∫
πC′

Ã(y)e−λS(y)dy +O(e−λε).

The integral in the above expression is looked after by the last lemma.
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